ROLLABLE METAMATERIAL SCREEN FOR MAGNETIC RESONANCE COUPLING-BASED HIGH-EFFICIENCY WIRELESS POWER TRANSFER

Woosol Lee and Yong-Kyu Yoon

This paper presents a rollable metamaterial screen for high-efficiency wireless power transfer (WPT) system based on magnetic resonance coupling, which operates at 4.5 MHz. The rollable metamaterial screen with a fully expanded area of 750 mm × 750 mm is located in the middle between transmitter and receiver coils and focuses the magnetic field and, by such a way, significantly improves power transfer efficiency (PTE). The metamaterial screen can be rolled up, e.g. onto the ceiling when it is not used, and thus does not require any designated space for the screen saving space. A WPT system with the rollable metamaterial screen is designed, fabricated, and characterized. Improved PTE is qualitatively and quantitatively verified by light bulb experiments and vector network analyzer measurements. The PTE of the WPT system with the metamaterial screen increases from 36 to 58.52% and 10.24 to 31.36% for the distances between the transmitter and receiver coils 100 and 150 cm, respectively. The effects of lateral and angular misalignments on the PTE of the WPT system are also studied. Obtained results show that the rollable metamaterial screen improves the PTE even at the misaligned condition.

Keywords: Magnetic resonance coupling (MRC), Power transfer efficiency (PTE), Rollable metamaterial screen and Wireless power transfer

ARTICLE LINK

Return to publications